Safety in Laboratory and Regulatory Services for Herbal Products
Risk Management of Contaminants in Herbal Substances and Herbal Preparations

Dr. Bernhard Klier
PhytoLab GmbH & Co. KG
91487 Vestenbergsgreuth
Germany
Overview of topics

- Introduction

- Basis of risk management

- Examples from practice
 - pesticides (analytical methods)
 - bromide (regulation)
 - ochratoxin A (reduction of residues)
 - microbiological counts (reduction during processing)

- Summary
Introduction

Raw products of herbal origin are naturally subject to considerable variation in terms of their constituents. Of the roughly 400 plants and parts of plants on the herbal market, 30 to 40 plants are cultivated on a large scale. Only about 30% of the total amount of herbal drugs are gathered from the wild.

Nevertheless, in quantitative terms, the vast majority (80 - 90%) of plant species are collected from the wild.
It must not be assumed that controlled cultivation conditions only, but should also be taken into account the world-wide contamination of the plant world as well as the particular circumstances in the countries of origin, which are mostly outside the EU.

Criteria influencing the quality of herbal material:
Dried Plant material

Taking samples

Sensoric
- appearance
- taste
- smell/aroma
- infusion
- ash
- Foreign matter
- Identity
- pest
- ingredients
- Loss on drying

Monograph - requirements

Technical parameter
- sieve
- homogeneity
- fluidity
- Volume/bulk density

Contaminants
- Pesticides
- Gassing agents
- Heavy metals
- PCP
- PCB, PAK, Dioxins
- Mikrobiology
- Radioactivity
- Acrylamide
- ?
- ?
BASIS FOR RISK MANAGEMENT OF CONTAMINANTS
Basis for Risk Management of Contaminants

- screening of existing regulations, publications
- definition of possible contaminants
- development of suitable methods of analysis
- performing analysis (monitoring products, target analyses)
- evaluation of results (data base)
- risk based schemes of testing (herbal drug is normally tested)
References to Contaminants

- **European Pharmacopoeia** (monograph „Herbal Drugs“, pesticides, heavy metals, aflatoxins, ochratoxin A and microbiology).
- **EC regulations for foodstuffs** (e.g. pesticides, mycotoxins, heavy metals, PAHs, radioactivity, nitrates).
- **National regulations** (e.g. German aflatoxin regulations, German regulation for contaminants).
- **Publications**
 (e.g. Codex Alimentarius, Food and Agriculture Organization (FAO/UN);
 Compendium: „Worldwide regulations for mycotoxins 1995“;
 Current Findings on the Heavy Metal Content in Herbal Drugs, Pharmeuropa Scientific Notes 2009-1).
Possible Contaminants

1. **Pesticides**
2. Gassing agents (**Methyl bromide**, Ethylene oxide, PH₃)
3. Heavy metals, especially toxic metals
4. Mycotoxins (aflatoxin, **ochratoxin A** and others)
5. Radioactive contamination (Cs 134/137)
6. Microbiological contamination
7. Other contaminants (dioxins, PAH`s, acrylamide, …)
PESTICIDES
(SUITABILITY OF ANALYTICAL METHODS)

- scope of testing
- analytical methods
- matrix effects
- risk assessment
Development of methods for pesticide testing

There are 550 compounds and metabolites listed in EU 396/2005, but totally existing about 1,650 chemical pesticides (Pesticide Manual 2003).

In analytical laboratories 400-600 analytes could be detected with:

- multi methods
- group specific methods
- single residue methods.

There is an analytical gap of more than 1000 substances.
Development of methods for pesticide testing

Multi methods:
- GC-methods (e.g. DFG S19)
- LC-MS/MS (e.g. Quechers)

Group specific methods:
- Dithiocarbamates, Phenoxyalkancarbonic acids, Phenylureas, Carbamates, ...

Single methods:
- Pyridat, Chlormequat, Glyphosate,
- Paraquat, Nicotine ...

→ about 200-300 substances
→ about 200-300 substances
→ about 60 substances
→ about 20 substances
Matrix effects

In dried herbal material a strong matrix effect has been observed in several cases.

→ Matrix effects cause changes in signal intensity
Measurement of matrix effects in LC-MS/MS

Determination of matrix effect profiles with postcolumn infusion
(G. Kempe, 6th International Fresenius conference, 24th May 2011)

→ with continuous measurement of matrix effects the matrix load in the entire chromatogram could be made visible.
Requirements for calibration

- matrix calibration (or internal labelled standard) is required
- in LC-MS/MS there are mainly peak suppressions observed:
 - in LC-MS/MS each sample has to be calibrated necessarily in the same matrix
- in the GC-MS-MS suppression or fortification of the signal are possible
- unclear findings should be confirmed by standard addition; but false positive results caused by matrix (same product ions, same RT)
 - change chromatography or HRMS
Criteria for pesticide residues

- persistance of substances
- country of origin (worldwide, EU), supplier
- harvested or wild collected
- cross contamination *(field to field, warehouses, processing, packing, etc.)*
- treatment on the field, in the warehouses, transport
- kind of product
Requirements for a effective control of pesticides in herbal products:

- detailed informations about the legal requirements

- expericence and knowledge which pesticides are used on the different plants and in which country respectively

- Expericence and knowledge about risks of contamination (data base)

- Choice of the most suitable test method(s)

- monitoring and target analyses with herbal drug
Pesticides - assessment

- it is not possible to guarantee products without any pesticide residue
- people are very sensitive to any pesticide residues
- in quality control not all pesticides could be tested every time because of the number of substances (analytical gap) and the number of different methods used (→ risk based analysis).
BROMIDE (REGULATIONS)

- origin of bromide residues
- data base
- risk assessment
Bromide

The bromide content in a plant material can occur of natural origin (maritime organisms, like fucus or seaweed) or taken from soil (salts; close to sea) and accumulated (e.g. chamomile).

A high bromide content is also caused by a methyl bromide treatment (soil, products).

Methyl bromide

A very reactive and high toxic substance that can be detected for only a very short period after treatment.

→ *Maximum residue limit: 0.01 mg/kg*
Bromide

There is only an indirect determination via “total inorganic bromide” described. In this case a specific detection of methyl bromide treatment is not possible.

Maximum residue limits (MRLs) of “total inorganic bromide“ (EC 396/2005) :

- Spices 400 mg/kg
- Chamomile flowers 250 mg/kg
- Hibiscus flowers 100 mg/kg
- Tea (camelia s.) 70 mg/kg
- Fresh herbs 50 mg/kg (⇒ 250 mg/kg)
- Other Herbal Infusions 50 mg/kg
Bromide

Maximum residue limit (MRL) of „total inorganic bromide“ (Ph.Eur.) :

Herbal drugs 50 mg/kg (threshold ?)

Proposed maximum residue level of „total inorganic bromide“ in organic foodstuff (BNN) :

Organic foodstuff 5 mg/kg (*)

(*) If the use of methyl bromide could be excluded higher levels are allowed.
Bromide

In herbal drugs bromide values from 1 up to 400mg/kg (chamomile) have been found; maritime plants contain organic bond bromine in higher concentrations (fucus contains values up to 865mg/kg). (*)

But only a few results are above 50mg/kg:
- chamomile, fucus, hibiscus, lemon verbena, lemongrass, mate, some herbal drugs for homoeopathic use.

(*) Data base of the German manufacturers` Association`s (BAH) Working group on Contaminants; containing datas of 1330 samples analysed from 2002 until 2010.
Bromide: assessment of risk

Toxicological relevance

The ADI of 0.4 mg/kg body weight yields an acceptable total daily intake of 24 mg bromide / person for a 60 kg person and 4 mg bromide / person for a 10 kg child.

Assuming a maximum residual level of 250 µg bromide per g herbal tea (250 ppm) and regarding an ADI of 0.4 mg/kg body weight

• an adult with 60 kg is allowed to consume 24,000 µg / 250 (µg / g) = 96 g herbal tea per day (= 9.6 liter herbal infusion)

• a child with 10 kg is allowed to consume 4,000 µg / 250 (µg / g) = 16 g herbal tea per day (= 1.6 liter herbal infusion).
Bromide: assessment of risk

- there is only a low risk concerning toxicity
- for some herbal drugs (pharmaceutical or homoepathic use) exceptional MRLs should be set
- there is a high risk for an objection of herbal products of organic origin (low limit, methyl bromide treatment must be excluded).
MYCOTOXINS (REDUCTION OF OCHRATOXINE A RESIDUES)

- occurrence
- reduction
- risk management
Significance and occurrence of mycotoxins

Metabolic products of moulds, characteristic of each species, for the most part heat-stable
Acute toxicity: damage to liver, kidneys, nervous system, skin, mucous membranes, immune systems
Chronic toxicity: may provoke cancer, may cause congenital abnormalities and malformations in the embryo

UN Food and Agriculture Organisation (FAO):
- 25% of the world production of foodstuffs
- 20% of the cereal harvest in the EU is contaminated with mycotoxins.
Moulds forming Mycotoxins

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Mycotoxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus spec.</td>
<td>Aflatoxin B1, B2, G1, G2,</td>
</tr>
<tr>
<td></td>
<td>(Metabolite in mammals: Aflatoxin M1)</td>
</tr>
<tr>
<td>Aspergillus spec., Penicillium spec.</td>
<td>Patulin</td>
</tr>
<tr>
<td></td>
<td>Ochratoxin A</td>
</tr>
<tr>
<td>Fusarium spec.</td>
<td>Fumonisins</td>
</tr>
<tr>
<td></td>
<td>Zearalenon</td>
</tr>
<tr>
<td></td>
<td>Trichothecenes (Deoxynivalenol, Nivalenol, T2 Toxin and HT2 Toxin)</td>
</tr>
</tbody>
</table>
Origin and occurrence of Ochratoxin A

Origin

- Aspergillus ochraceus on foodstuffs of plant origin, Ochratoxins principally Ochratoxin A,
- in warm regions of the earth

Occurrence

- in harvest products worldwide (toxins generated during storage)
 - Maize, oats, barley, wheat, rye
 - Rice, millet, buckwheat
 - Soya beans
 - Ground nuts, Brazil nuts, pepper
 - Coffee, cocoa (chocolate), wine, beer
 - Dried fruit, vegetables, spices

Dr. Bernhard Klier, AOAC Symposium October 2011
Ochratoxin A limits

<table>
<thead>
<tr>
<th>Product</th>
<th>Limit µg/kg</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw cereal grains</td>
<td>5,0</td>
<td>(EC) No 1881/2006</td>
</tr>
<tr>
<td>Dried wine fruit</td>
<td>10,0</td>
<td>(EC) No 1881/2006</td>
</tr>
<tr>
<td>Soluble coffee</td>
<td>10,0</td>
<td>(EC) No 1881/2006</td>
</tr>
<tr>
<td>Roasted coffee beans</td>
<td>5,0</td>
<td>(EC) No 1881/2006</td>
</tr>
<tr>
<td>Wine, grape must, grape juice</td>
<td>2,0</td>
<td>(EC) No 1881/2006</td>
</tr>
<tr>
<td>Several spices</td>
<td>30 (15)</td>
<td>(EC) No 1881/2006</td>
</tr>
<tr>
<td>Baby food</td>
<td>0,50</td>
<td>(EC) No 1881/2006</td>
</tr>
</tbody>
</table>
Ochratoxin A positive samples

Analysis of 1978 samples show:

- Products with positive results in many cases (>20µg/kg):
 - Cocoa, currants, dandelion root, ginger, liquorice root,
 - Marshmallow root, orange flowers

- Products with sporadical positive results:
 - Linden flowers, orange peels
Effect of improved GACP on Ochratoxin A levels in Liquorice root (ppb)

<table>
<thead>
<tr>
<th>Year</th>
<th>n</th>
<th>max. value</th>
<th>90<sup>th</sup> percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>50</td>
<td>425</td>
<td>234</td>
</tr>
<tr>
<td>2000</td>
<td>159</td>
<td>904</td>
<td>145</td>
</tr>
<tr>
<td>2001</td>
<td>192</td>
<td>337</td>
<td>41</td>
</tr>
<tr>
<td>2002</td>
<td>152</td>
<td>423</td>
<td>34</td>
</tr>
<tr>
<td>2003</td>
<td>60</td>
<td>72</td>
<td>20</td>
</tr>
<tr>
<td>2010</td>
<td>257</td>
<td>117</td>
<td>26</td>
</tr>
</tbody>
</table>

Dr. Bernhard Klier, AOAC Symposium October 2011
Risk management of ochratoxin A

- target analyses of ochratoxin A (based on risk assessment)
- ochratoxin A is soluble in alcoholic solvents: analyses of the extracts have to be performed if possible contamination of raw material is known
- in quality control not all mycotoxins have to be tested every time, because only a few herbal drugs are contaminated
- monitoring of other mycotoxins
- providing contamination (e.g. drying conditions; GACP)
MICROBIOLOGICAL COUNTS (REDUCTION DURING PROCESSING)

- microbiological counts
- acceptance criteria
- procedures for reduction
Regulations for the Microbiological Quality

- European Pharmacopeia Ph.Eur. 7th edition, 5.1.8: Microbiological quality of herbal medicinal products for oral use

- EHIA`S (European Herbal Infusion Association) recommended microbiological specifications for Herbal infusion (dry) and Herbal infusion raw materials (dry), (EHIA) 4, May 2011

- Recommendations of the working group on Food - Microbiology and Hygiene of the German Society for Hygiene and Microbiology (DGHM, May 2011)

- USP 34, <2023> : Microbiological Attributes of nonsterile nutritional and dietary supplements.
Microbiological Count of Herbal Drugs
Total Aerobic Count

Samples tested: 6,725

Due to low water content (7-12 %) and low water activity (0.4-0.6) spoilage can be excluded!

Dr. Bernhard Klier, AOAC Symposium October 2011
Total Aerobic Count

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Limit</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry soups, DGHM</td>
<td>10^6</td>
<td>-</td>
</tr>
<tr>
<td>Herbal infusion raw material, EHIA</td>
<td>10^8</td>
<td>-</td>
</tr>
<tr>
<td>Herbal medicinal teas, Ph. Eur.</td>
<td>10^7</td>
<td>+</td>
</tr>
<tr>
<td>Botanicals to be treated with boiling water before use, USP 34</td>
<td>10^5</td>
<td>++</td>
</tr>
<tr>
<td>Spices for direct ingestion, DGHM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medicinal drugs, direct intake, Ph. Eur.</td>
<td>10^5</td>
<td>++</td>
</tr>
<tr>
<td>Instant products, DGHM</td>
<td>10^5</td>
<td>-</td>
</tr>
<tr>
<td>Extracts and tinctures, Ph. Eur.</td>
<td>10^4</td>
<td>-</td>
</tr>
</tbody>
</table>

Russian Requirements

500,000 ++
Microbiological Count of Herbal Drugs
Moulds and Yeast’s

Samples tested: 6,561

<table>
<thead>
<tr>
<th>Count per 1 g</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10E1</td>
<td>0,5%</td>
</tr>
<tr>
<td>10E2</td>
<td>5,3%</td>
</tr>
<tr>
<td>10E3</td>
<td>17,0%</td>
</tr>
<tr>
<td>10E4</td>
<td>36,5%</td>
</tr>
<tr>
<td>10E5</td>
<td>27,9%</td>
</tr>
<tr>
<td>10E6</td>
<td>10,7%</td>
</tr>
<tr>
<td>10E7</td>
<td>2,1%</td>
</tr>
</tbody>
</table>

Dr. Bernhard Klier, AOAC Symposium October 2011
Moulds and Yeast`s

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Limit</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry soups, DGHM</td>
<td>10^4</td>
<td>+</td>
</tr>
<tr>
<td>Herbal infusion raw material, EHIA</td>
<td>10^5</td>
<td>+</td>
</tr>
<tr>
<td>Herbal medicinal teas, Ph. Eur.</td>
<td>10^5</td>
<td>+</td>
</tr>
<tr>
<td>Botanicals to be treated with boiling water before use, USP 34</td>
<td>10^3</td>
<td>++</td>
</tr>
<tr>
<td>Spices for direct ingestion, DGHM</td>
<td>10^5</td>
<td>+</td>
</tr>
<tr>
<td>Medicinal drugs, direct intake, Ph. Eur.</td>
<td>10^4</td>
<td>++</td>
</tr>
<tr>
<td>Instant products, DGHM</td>
<td>10^4</td>
<td>-</td>
</tr>
<tr>
<td>Extracts and tinctures, Ph. Eur.</td>
<td>10^2</td>
<td>-</td>
</tr>
</tbody>
</table>

Russian Requirements 100 +++

Dr. Bernhard Klier, AOAC Symposium October 2011 05.10.2011
Microbiological Contamination of Herbal Drugs
Escherichia coli

Samples tested: 6,079

Counts per 1 g

- 49.5% of samples had 10E1 counts.
- 25.2% had 10E2 counts.
- 12.7% had 10E3 counts.
- 9.0% had 10E4 counts.
- 3.4% had 10E5 counts.
- 0.3% had 10E6 counts.
E. coli

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Limit</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry soups, DGHM</td>
<td>10^2</td>
<td>-</td>
</tr>
<tr>
<td>Herbal infusion raw material, EHIA</td>
<td>10^4</td>
<td>+</td>
</tr>
<tr>
<td>Herbal medicinal teas, Ph. Eur.</td>
<td>10^3</td>
<td>++</td>
</tr>
<tr>
<td>Botanicals to be treated with boiling water before use, USP 34</td>
<td>nd</td>
<td>+++</td>
</tr>
<tr>
<td>Spices for direct ingestion, DGHM</td>
<td>10^3</td>
<td>++</td>
</tr>
<tr>
<td>Medicinal drugs, direct intake Ph. Eur.</td>
<td>nd</td>
<td>+++</td>
</tr>
<tr>
<td>Instant products DGHM</td>
<td>10^1</td>
<td>-</td>
</tr>
<tr>
<td>Extracts and tinctures Ph. Eur.</td>
<td>nd</td>
<td>-</td>
</tr>
</tbody>
</table>

Russian Requirements
no limit
Microbiological Count of Herbal Drugs
Enterobacteria

Samples tested: 741

<table>
<thead>
<tr>
<th>Count per 1 g</th>
<th>1.6%</th>
<th>9.7%</th>
<th>18.5%</th>
<th>30.0%</th>
<th>30.9%</th>
<th>8.4%</th>
<th>0.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>n samples</td>
<td>10E2</td>
<td>10E3</td>
<td>10E4</td>
<td>10E5</td>
<td>10E6</td>
<td>10E7</td>
<td>10E8</td>
</tr>
</tbody>
</table>

Dr. Bernhard Klier, AOAC Symposium October 2011
Enterobacteria

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Limit</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry soups, DGHM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Herbal infusion raw material, EHIA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Herbal medicinal teas, Ph.Eur</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Botanicals to be treated with boiling water before use, USP 34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spices for direct ingestion, DGHM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Medicinal drugs, direct intake, Ph.Eur.</td>
<td>10^4</td>
<td>++</td>
</tr>
<tr>
<td>Instant products, DGHM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extracts and tinctures, Ph. Eur</td>
<td>10^2</td>
<td>-</td>
</tr>
</tbody>
</table>

Russian Requirements (Coliforms)

absent/g +++
Microbiological Contamination of Herbal Drugs

Salmonella

- 96.7% negative
- 3.3% positive

Samples tested: 17,833

Counts per 25g
Salmonella

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Limit</th>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry soups, DGHM</td>
<td>nd/25g</td>
<td>+/-</td>
</tr>
<tr>
<td>Herbal infusion raw material, EHIA</td>
<td>nd/125g</td>
<td>++</td>
</tr>
<tr>
<td>Herbal medicinal teas, Ph. Eur.</td>
<td>nd/25g</td>
<td>++</td>
</tr>
<tr>
<td>Botanicals to be treated with boiling water before use, USP 34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spices for direct ingestion, DGHM</td>
<td>nd/25g</td>
<td>++</td>
</tr>
<tr>
<td>Medicinal drugs, direct intake, Ph. Eur.</td>
<td>nd/25g</td>
<td>++</td>
</tr>
<tr>
<td>Instant products, DGHM</td>
<td>nd/25g</td>
<td>-</td>
</tr>
<tr>
<td>Extracts and tinctures, Ph. Eur.</td>
<td>nd/25g</td>
<td>-</td>
</tr>
</tbody>
</table>

Russian Requirements

| absent/25g | ++ |

Dr. Bernhard Klier, AOAC Symposium October 2011 | 05.10.2011 | 45
Drugs Frequently Contaminated with Salmonella
(Findings Referred to Samples of 5x25g)

<table>
<thead>
<tr>
<th>Product</th>
<th>number of lots</th>
<th>% positive lots sample (5 x 25 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemon Balm</td>
<td>71</td>
<td>24</td>
</tr>
<tr>
<td>Verbena</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>Fennel</td>
<td>102</td>
<td>10</td>
</tr>
<tr>
<td>Red currant leaves</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>Camomile</td>
<td>316</td>
<td>40</td>
</tr>
<tr>
<td>Linden</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Silver Linden</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td>Peppermint</td>
<td>413</td>
<td>31</td>
</tr>
<tr>
<td>Lemon grass</td>
<td>84</td>
<td>18</td>
</tr>
</tbody>
</table>
Problems of Salmonella positive results

- A special problem in view to the assessment of the microbiological quality of herbal products is their homogeneity.
- Contamination with Salmonella species results from spot contamination.
- Statistically seen it is almost impossible to confirm that Salmonella is absent in a herbal product.
Procedures for the reduction of microbiological counts

Ethylene oxide treatment has been banned in the EC.

The treatment with **ionising rays** is effective

- for medicinal herbal drugs, it is allowable, but it requires a very costly licensing procedure, at least in Germany,
- for nutritional products, it is allowed under certain conditions (aromatic plants with appropriate labelling)

Water vapour treatment may lead to technologically poorly applicable products, possibly impaired in terms of their physico-chemical quality and sensory properties.

Other procedures, available, are not universally applicable for herbal drugs (e.g. high frequency treatment).
Reduction of the Microbiological Count by Water Vapour Treatment

Water vapour treatment can be a suitable procedure for the reduction of microbial counts under the following conditions:

- Continuous procedures to minimise the negative impact of heat on the herbal product
- High temperatures with short exposure time.

→ Reduction of the microbial count (total count by factor 10^1 to 10^2; enterobacteria, e.coli by factor 10^3 to 10^5)

→ Complete destruction of Salmonella

→ No authorisation or labelling required
Decrease of the microbiological counts in infusions prepared with boiling water
(Tests of PhytoLab)

The microbiological counts of 20 lots of *Senna leaves and pods* were compared with the counts of infusions prepared with these drugs and boiling water.

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>count/ g drug</th>
<th>count/ g infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total aerobic count</td>
<td>$1.8 \times 10^7 - 3.0 \times 10^5$ ↑</td>
<td>$6.5 \times 10^5 - 1 \times 10^3$</td>
</tr>
<tr>
<td>Moulds and yeast’s</td>
<td>$8.0 \times 10^5 - 1.0 \times 10^3$ ↑</td>
<td>$1.0 \times 10^1 - n.d.$</td>
</tr>
<tr>
<td>Enterobacter</td>
<td>$2.5 \times 10^6 - 4.0 \times 10^3$ ↑</td>
<td>n.d.</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>$5.0 \times 10^5 - 2.0 \times 10^2$ ↑</td>
<td>n.d.</td>
</tr>
<tr>
<td>n.d. = not detectable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dr. Bernhard Klier, AOAC Symposium October 2011 | 05.10.2011 | 50
SUMMARY
Basis for Riskmanagement of Contaminants

- literature research and update of existing regulations, publications
- definition of possible contaminants
- development of suitable methods
- performing analyses (monitoring products, target analyses)
- evaluation of results (data base) and risk assessment
- risk based schemes of testing (herbal drug is normally tested)
- improve quality (GACP, processing)
Thank you for your interest!
Vielen Dank!

Ihr Ansprechpartner
Herr Dr. Bernhard Klier

PhytoLab GmbH & Co. KG
Dutendorfer Straße 5-7
91487 Vestenbergsgreuth
Germany
Tel.: +49 9163 88-342
Fax.: +49 9163 88-349
bernhard.klier@phytolab.de
Copyright and liability

We emphasise that the contents of this presentation constitute works subject to protection under the laws of copyright. Any reproduction, dissemination, further processing or other use of the presentation, of the information and contents thereof, or of corresponding excerpts thereof, shall be subject to our express consent.

The presentation was drawn up to the best of its authors’ knowledge and belief and is offered for information purposes. Absent further agreement, any information or contents found therein shall serve as non-binding indications only and shall represent no promise or pledge. The authors of the presentation cannot accept liability for damage that may arise as a result of utilisation of the information and contents of which the presentation consists, unless information and contents of which the presentation consists have been made part of a concrete agreement as between our customer and us.